The Next Era of Stainless-Steel Screw Anchor for Concrete and Masonry

Titen HD screw anchors are a trusted anchor solution because they offer the performance that specifiers need and the ease of installation that contractors demand. Until now, however, they were not for use in permanent exterior or corrosive environments. The Titen HD stainless-steel screw anchor for concrete and masonry sets the new standard for when the job calls for installation in multiple types of environments. It is the ultimate choice to provide fast and efficient installation, combined with long-lasting corrosion resistance for an unsurpassed peace-of-mind.

Innovative - The serrated carbon-steel threads on the tip of the stainless-steel Titen HD are vital because they undercut the concrete as the anchor is driven into the hole, making way for the rest of the threads to interlock with the concrete. In order for these threads to be durable enough to cut into the concrete, they are formed from carbon steel that is then hardened and brazed onto the tip of the anchor.
Corrosion Resistant - For dry, interior applications, carbon-steel corrosion is not a risk, but in any kind of exterior, coastal or chemical environment the anchor would be susceptible to corrosion. With the introduction of the THDSS, there is finally a state-of-the-art anchor solution that combines the corrosion resistance of Type 300 Series stainless steel with the undercutting ability of heat-treated carbon-steel cutting threads.

Features:

- THDSS is now the first stainless-steel screw anchor available in $5 / 8^{\prime \prime}$ and $3 / 4^{\prime \prime}$ diameters, in addition to the $3 / 8^{\prime \prime}$ and $1 / 22^{\prime \prime}$ sizes
- Ideal for exterior or corrosive environments
- Less carbon steel, less expansion
- Installs with an impact wrench or by hand tool
- Code listed in IAPMO UES ER-493 (concrete) and ICC-ES ESR-1056 (masonry)
- Tested per ACI355.2 and AC193

Material: Type 316 and Type 304 stainless steel with carbon-steel lead threads

Installation

1
Caution: Holes in steel fixtures to be mounted should match the diameter specified in the table below if steel is thicker than 12 gauge.
\triangle Caution: Use a Titen HD screw anchor one time only - installing the anchor multiple times may result in excessive thread wear and reduce load capacity. Do not use impact wrenches to install into hollow CMU.
Caution: Oversized holes in base material will reduce or eliminate the mechanical interlock of the threads with the base material and reduce the anchor's load capacity.

1. Drill a hole in the base material using a carbide drill bit (complying with ANSI B212.15) with the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified minimum hole depth overdrill (see table below) to allow the thread tapping dust to settle, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and the dust from drilling and tapping.
2. Insert the anchor through the fixture and into the hole.
3. Tighten the anchor into the base material until the hex-washer head contacts the fixture.

Installation Sequence

Stainless-Steel Titen HD ${ }^{\circledR}$ Design Information - Concrete

Stainless-Steel Titen HD Anchor Product Data

Size (in.)	Model No. (Type 316)	Model No. (Type 304)	Drill Bit Dia. (in.)	Wrench Size (in.)	Buan	Carton
$3 / 8 \times 3$	THD37300H6SS	THD37300H4SS	$3 / 8$	$9 / 16$	50	200
$3 / 8 \times 4$	THD37400H6SS	THD37400H4SS	$3 / 8$	$9 / 16$	50	200
$3 / 8 \times 5$	THD37500H6SS	THD37500H4SS	$3 / 8$	$9 / 16$	50	100
$3 / 8 \times 6$	THD37600H6SS	THD37600H4SS	$3 / 8$	$9 / 16$	50	100
$1 / 2 \times 3$	THD50300H6SS	THD50300H4SS	$1 / 2$	$3 / 4$	25	100
$1 / 2 \times 4$	THD50400H6SS	THD50400H4SS	$1 / 2$	$3 / 4$	20	80
$1 / 2 \times 5$	THD50500H6SS	THD50500H4SS	$1 / 2$	$3 / 4$	20	80
$1 / 2 \times 6$	THD50600H6SS	THD50600H4SS	$1 / 2$	$3 / 4$	20	80
$1 / 2 \times 61 / 2$	THD50612H6SS	THD50612H4SS	$1 / 2$	$3 / 4$	20	40
$1 / 2 \times 8$	THD50800H6SS	THD50800H4SS	$1 / 2$	$3 / 4$	20	40
$5 / 8 \times 4$	THDB62400H6SS	THDB62400H4SS	$5 / 8$	$15 / 16$	10	40
$5 / 8 \times 5$	THDB62500H6SS	THDB62500H4SS	$5 / 8$	$15 / 16$	10	40
$5 / 8 \times 6$	THDB62600H6SS	THDB62600H4SS	$5 / 8$	$15 / 16$	10	40
$5 / 8 \times 61 / 2$	THDB62612H6SS	THDB62612H4SS	$5 / 8$	$15 / 16$	10	40
$5 / 8 \times 8$	THDB62800H6SS	THDB62800H4SS	$5 / 8$	$15 / 16$	10	20
$3 / 4 \times 4$	THD75400H6SS	THD75400H4SS	$3 / 4$	$11 / 8$	10	40
$3 / 4 \times 5$	THD75500H6SS	THD75500H4SS	$3 / 4$	$11 / 8$	5	20
$3 / 4 \times 6$	THD75600H6SS	THD75600H4SS	$3 / 4$	$11 / 8$	5	20
$3 / 4 \times 7$	THD75700H6SS	THD75700H4SS	$3 / 4$	$11 / 8$	5	10
$3 / 4 \times 81 / 2$	THD75812H6SS	THD75812H4SS	$3 / 4$	$11 / 8$	5	10

Stainless-Steel Titen HD Installation Information¹

Characteristic	Symbol	Units	Nominal Anchor Diameter (in.)								
			3/8		1/2			5/8		3/4	
Installation Information											
Nominal Diameter	$d_{a}\left(d_{0}\right)^{4}$	in.	$3 / 8$		1/2			5/8		3/4	
Drill Bit Diameter	$d_{\text {bit }}$	in.	3/8		1/2			5/8		3/4	
Minimum Baseplate Clearance Hole Diameter ${ }^{2}$	d_{c}	in.	1/2		5/8			3/4		7/8	
Maximum Installation Torque ${ }^{3}$	$T_{\text {inst,max }}$	ft.-lbf.	40		70			85		150	
Maximum Impact Wrench Torque Rating	$T_{\text {impact,max }}$	ft.-lbf.	150		345			345		380	
Minimum Hole Depth	$h_{\text {hole }}$	in.	23/4	$31 / 2$	$33 / 4$		$41 / 2$	41/2	6	6	63/4
Nominal Embedment Depth	$h_{\text {nom }}$	in.	$21 / 2$	$31 / 4$	$31 / 4$		4	4	$51 / 2$	51/2	$61 / 4$
Effective Embedment Depth	$h_{\text {ef }}$	in.	1.40	2.04	1.86		2.50	2.31	3.59	3.49	4.13
Critical Edge Distance	$C_{a c}$	in.	$41 / 2$	51/2	6		53/4	6	63/8	63/4	73/8
Minimum Edge Distance	$c_{\text {min }}$	in.	$13 / 4$	13/4	13/4	$21 / 4$	$13 / 4$	13/4	$13 / 4$	$13 / 4$	$13 / 4$
Minimum Spacing	$s_{\text {min }}$	in.	3	3	4	3	3	3	3	3	3
Minimum Concrete Thickness	$h_{\text {min }}$	in.	4	5			$61 / 4$	6	$81 / 2$	$83 / 4$	10
Anchor Data											
Yield Strength	$f_{y a}$	psi	98,400		91,200			83,200		92,000	
Tensile Strength	$f_{\text {uta }}$	psi	123,000		114,000			104,000		115,000	
Minimum Tensile and Shear Stress Area	$A_{s e}{ }^{5}$	in. ${ }^{2}$	0.099		0.1832			0.276		0.414	
Axial Stiffness in Service Load Range - Uncracked Concrete	$\beta_{\text {uncr }}$	lb./in.	807,700		269,085			111,040		102,035	
Axial Stiffness in Service Load Range - Cracked Concrete	$\beta_{c r}$	$\mathrm{lb} . / \mathrm{in}$.	113,540		93,675			94,400		70,910	

For SI: $1 \mathrm{in} .=25.4 \mathrm{~mm}, 1 \mathrm{ft} .-\mathrm{lbf} .=1.356 \mathrm{~N}-\mathrm{m}, 1 \mathrm{psi}=6.89 \mathrm{kPa}, 1 \mathrm{in}^{2}=645 \mathrm{~mm}^{2}, 1 \mathrm{lb} . / \mathrm{in} .=0.175 \mathrm{~N} / \mathrm{mm}$.

1. The information presented in this table is to be used in conjunction with the design criteria of ACl 318 -14 Chapter 17 or ACl 318-11 Appendix D, as applicable.
2. The minimum hole size must comply with applicable code requirements for the connected element.
3. $T_{\text {inst, max }}$ applies to installations using a calibrated torque wrench.
4. For the 2006 IBC d_{0} replaces d_{2}. The notation in parenthesis is for the 2006 IBC.

* See p. 13 for an explanation of the load table icons.

Characteristic	Symbol	Units	Nominal Anchor Diameter (in.)							
			3/8		1/2		5/8		$3 / 4$	
Anchor Category	1,2 or 3	-	1							
Nominal Embedment Depth	$h_{\text {nom }}$	in.	21/2	$31 / 4$	$31 / 4$	4	4	$51 / 2$	$51 / 2$	$61 / 4$
Steel Strength in Tension (ACI 318-14 17.4.1 or ACI 318-11 Section D.5.1)										
Tension Resistance of Steel	$N_{s a}$	lbf.	12,177		20,885		28,723		47,606	
Strength Reduction Factor - Steel Failure ${ }^{2}$	$\phi_{s a}$	-	0.75							
Concrete Breakout Strength in Tension (ACl 318-14 17.4.2 or ACl 318 Section D.5.2)										
Effective Embedment Depth	$h_{e f}$	in.	1.40	2.04	1.86	2.50	2.31	3.59	3.49	4.13
Critical Edge Distance	$c_{a c}$	in.	$41 / 2$	$51 / 2$	6	53/4	6	63/8	$63 / 4$	73/8
Effectiveness Factor - Uncracked Concrete	$k_{\text {uncr }}$	-	27	24	27	24	24	24	27	27
Effectiveness Factor - Cracked Concrete	$k_{c r}$	-	21	17	17	17	17	17	17	21
Modification Factor	$\Psi_{C, N}$	-	1							
Strength Reduction Factor - Concrete Breakout Failure ${ }^{3}$	$\phi_{c b}$	-	0.65							
Pullout Strength in Tension (ACI 318-14 17.4.3 or ACI 318-11 Section D.5.3)										
Pullout Resistance Uncracked Concrete ($\mathrm{f}^{\prime}{ }_{\mathrm{C}}=2,500 \mathrm{psi}$)	$N_{p, \text { uncr }}$	lbf .	N/A ${ }^{4}$	N/A ${ }^{4}$	N/A ${ }^{4}$	N/A ${ }^{4}$	$3,820^{5}$	9,080 ${ }^{7}$	N/A ${ }^{4}$	N/A ${ }^{4}$
Pullout Resistance Cracked Concrete ($\mathrm{f}_{\mathrm{c}}^{1}=2,500 \mathrm{psi}$)	$N_{p, c r}$	lbf.	1,675 ${ }^{5}$	2,415 ${ }^{5}$	1,995 ${ }^{5}$	N/A ${ }^{4}$				
Strength Reduction Factor - Pullout Failure ${ }^{6}$	ϕ_{p}	-	0.65							
Tension Strength for Seismic Applications (ACI 318-14 17.2.3.3 or ACI 318-11 Section D.3.3.3)										
Nominal Pullout Strength for Seismic Loads ($\left.\mathrm{f}^{\prime}{ }_{C}=2,500 \mathrm{psi}\right)$	$N_{p, e q}$	lbf.	1,675 ${ }^{5}$	$2,415^{5}$	1,995 ${ }^{5}$	N/A ${ }^{4}$				
Strength Reduction Factor for Pullout Failure ${ }^{6}$	$\phi_{e q}$	-								

For SI: $1 \mathrm{in} .=25.4 \mathrm{~mm}, 1 \mathrm{ft} .-\mathrm{lbf} .=1.356 \mathrm{~N}-\mathrm{m}, 1 \mathrm{psi}=6.89 \mathrm{kPa}, 1 \mathrm{in} .^{2}=645 \mathrm{~mm}^{2}, 1 \mathrm{lb} . / \mathrm{in} .=0.175 \mathrm{~N} / \mathrm{mm}$.

1. The information presented in this table is to be used in conjunction with the design criteria of ACl 318 -14 Chapter 17 or ACl 318 -11 Appendix D, as applicable.
2. The tabulated value of $\phi_{s a}$ applies when the load combinations of Section 1605.2 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used, as applicable. If the load combinations of ACl 318-11 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4(b), as applicable.
3. The tabulated values of $\phi_{c b}$ applies when both the load combinations of Section 1605.2 of the IBC, ACl 318-14 Section 5.3 or ACl 318-11 Section 9.2, as applicable, are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided in concrete. For installations where complying reinforcement can be verified, the $\phi_{c b}$ factors described in $\mathrm{ACl} 318-14$ 17.3.3(c) or $\mathrm{ACl} 318-$ 11 D.4.3(c), as applicable, may be used for Condition A. If the load combinations of ACl 318 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.4(c) for Condition B.
4. N/A denotes that pullout resistance does not govern and does not need to be considered.
5. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by ($\mathrm{f}_{\mathrm{c}} / 2,500$) ${ }^{0.5}$.
6. The tabulated values of ϕ_{p} or $\phi_{e q}$ applies when both the load combinations of $\mathrm{ACl} 318-14$ Section 5.3 or ACI 318-11 Section 9.2, as applicable, are used and the requirements of ACl 318 -14 17.3.3(c) or ACl 318 -11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACl 318 D.4.4(c) for Condition B.
7. The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by $\left(\mathrm{f}_{\mathrm{c}} / 2,500\right)^{0.4}$.
[^0]| Stainless-Steel Titen HD Characteristic Shear Strength Design Values ${ }^{1}$ | | | | | | | | IBC | | 5 w |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Characteristic | Symbol | Units | Nominal Anchor Diameter (in.) | | | | | | | |
| | | | 3/8 | | 1/2 | | 5\% | | $3 / 4$ | |
| Anchor Category | 1, 2 or 3 | - | 1 | | | | | | | |
| Nominal Embedment Depth | $h_{\text {nom }}$ | in. | 21/2 | $311 / 4$ | $31 / 4$ | 4 | 4 | $51 / 2$ | $51 / 2$ | $61 / 4$ |
| Steel Strength in Shear (ACI 318-14 17.5.1 or ACI 318-11 Section D.6.1) | | | | | | | | | | |
| Shear Resistance of Steel | $V_{\text {sa }}$ | lbf. | 3,790 | 4,780 | 6,024 | 7,633 | 10,422 | 10,649 | 13,710 | 19,161 |
| Strength Reduction Factor - Steel Failure ${ }^{2}$ | $\phi_{s a}$ | - | | | | | | | | |
| Concrete Breakout Strength in Shear (ACI 318-14 17.5.2 or ACI 318-11 Section D.6.2) | | | | | | | | | | |
| Nominal Diameter | $d_{a}\left(d_{0}\right)^{4}$ | in. | 0.375 | | 0.500 | | 0.625 | | 0.750 | |
| Load Bearing Length of Anchor in Shear | l_{e} | in. | 1.40 | 2.04 | 1.86 | 2.50 | 2.31 | 3.59 | 3.49 | 4.13 |
| Strength Reduction Factor - Concrete Breakout Failure ${ }^{3}$ | $\phi_{c b}$ | - | 0.70 | | | | | | | |
| Concrete Pryout Strength in Shear (ACI 318-14 17.5.3 or ACI 318-11 Section D.6.3) | | | | | | | | | | |
| Coefficient for Pryout Strength | $k_{\text {cp }}$ | - | 1.0 | | | 2.0 | 1.0 | 2.0 | | |
| Strength Reduction Factor - Concrete Pryout Failure ${ }^{4}$ | $\phi_{c p}$ | - | 0.70 | | | | | | | |
| Shear Strength for Seismic Applications (ACI 318-14 17.2.3.3 or ACI 318-11 Section D.3.3.3) | | | | | | | | | | |
| Shear Resistance — Single Anchor for Seismic Loads ($\mathrm{f}^{\prime} \mathrm{c}=2,500 \mathrm{psi}$) | $V_{s a, e q}$ | lbf. | 3,790 | 4,780 | 5,345 | 6,773 | 9,367 | 9,367 | 10,969 | 10,969 |
| Strength Reduction Factor - Steel Failure ${ }^{2}$ | $\phi_{e q}$ | - | 0.65 | | | | | | | |

For SI: $1 \mathrm{in} .=25.4 \mathrm{~mm}, 1 \mathrm{lbf} .=4.45 \mathrm{~N}$.

1. The information presented in this table is to be used in conjunction with the design criteria of ACl 318-14 Chapter 17 or ACl 318-11 Appendix D, as applicable.
2. The tabulated value of $\phi_{s a}$ and $\phi_{e q}$ applies when the load combinations of Section 1605.2 of the IBC, ACl 318-14 Section 5.3 or ACl 318 -11 Section 9.2, as applicable, are used. If the load combinations of ACl 318 Appendix C are used, the appropriate value of f must be determined in accordance with ACI 318 D.4.4(b).
3. The tabulated value of $\phi_{c b}$ applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318 -11 Section 9.2 are used and the requirements of ACl 318 -14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where
complying supplementary reinforcement can be verified, the $\phi_{c b}$ factors described in ACl 318 -14 17.3.3(c) or ACl 318 -11 D.4.3(c) for Condition A are allowed. If the load combinations of $\mathrm{ACl} 318-11$ Appendix C are used, the appropriate value of $\phi_{c b}$ must be determined in accordance with ACI 318-11 D.4.4(c).
4. The tabulated value of $\phi_{C D}$ applies when both the load combinations of IBC Section 1605.2, ACl 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of $\mathrm{ACl} 318-14$ 17.3.3(c) or $\mathrm{ACI} 318-11 \mathrm{D} .4 .3$ (c) for Condition B are met. If the load combinations of $\mathrm{ACl} 318-11$ Appendix C are used, appropriate value of $\phi_{c p}$ must be determined in accordance with ACI 318-11 Section D.4.4(c).
5. The notation in parenthesis is for the 2006 IBC.
[^1]Stainless－Steel Titen HD Allowable Tension and Shear Loads in 8＂Lightweight，Medium－Weight and Normal－Weight Grout－Filled CMU

$\begin{gathered} \text { Size } \\ \text { in. } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { Drill } \\ & \text { Bit } \\ & \text { Dia. } \\ & \text { in. } \end{aligned}$	Min． Embed Depth in． （mm）	Critical Edge Dist． in． （mm）	Critical End Dist． in． （mm）	Critical Spacing Dist． in． （mm）	Values for 8＂Lightweight，Medium－Weight or Normal－Weight Grout－Filled CMU			
						Tension Load		Shear Load	
						Ulimate Ib．（kN）	Allowable lb．（kN）	Ultimate lb．（kN）	Allowable lb．（kN）
Anchor Installed in the Face of the CMU Wall（See Figure 1）									
$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$	3／8	$\begin{aligned} & 23 / 4 \\ & (70) \end{aligned}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\stackrel{8}{8}$	$\begin{gathered} 2,125 \\ (9.5) \end{gathered}$	$\begin{aligned} & 425 \\ & (1.9) \end{aligned}$	$\begin{aligned} & 2,850 \\ & (12.7) \end{aligned}$	$\begin{aligned} & 570 \\ & (2.5) \end{aligned}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	1／2	$\begin{aligned} & 31 / 2 \\ & (89) \end{aligned}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 8 \\ (203) \end{gathered}$	$\begin{aligned} & 3,325 \\ & (14.8) \end{aligned}$	$\begin{aligned} & 665 \\ & (3.0) \end{aligned}$	$\begin{aligned} & 4,950 \\ & (22.0) \end{aligned}$	$\begin{aligned} & 990 \\ & (4.4) \end{aligned}$
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	5／8	$\begin{gathered} 41 / 2 \\ (114) \end{gathered}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\stackrel{8}{8}$	$\begin{aligned} & 3,850 \\ & (17.1) \end{aligned}$	$\begin{aligned} & 770 \\ & (3.4) \end{aligned}$	$\begin{aligned} & 4,925 \\ & (21.9) \end{aligned}$	$\begin{aligned} & 985 \\ & (4.4) \end{aligned}$
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	3／4	$\begin{gathered} 51 / 2 \\ (140) \end{gathered}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\begin{gathered} 12 \\ (305) \end{gathered}$	$\stackrel{8}{(203)}$	$\begin{aligned} & 5,200 \\ & (23.1) \end{aligned}$	$\begin{aligned} & 1,040 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 4,450 \\ & (19.8) \end{aligned}$	$\begin{aligned} & 890 \\ & (4.0) \end{aligned}$

Figure 1．Shaded Area $=$ Placement for Full and Reduced Allowable Load Capacity in Grout－Filled CMU

1．The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC．
2．Values for 8 ＂－wide，lightweight，medium－weight and normal－weight concrete masonry units．
3．The masonry units must be fully grouted．
4．The minimum specified compressive strength of masonry， $\mathrm{f}^{\prime} m$ ，at 28 days is $2,000 \mathrm{psi}$ ．
5．Embedment depth is measured from the outside face of the concrete masonry unit．
6．Allowable loads may be increased $331 / 3 \%$ for short－term loading due to wind or seismic forces where permitted by code．
7．Grout－filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads．
8．Refer to allowable load－adjustment factors for spacing and edge distance on p． 129.

Stainless－Steel Titen HD Allowable Tension and Shear Loads in 8＂Lightweight，Medium－Weight and Normal－Weight Hollow CMU

IBC
 9 ${ }^{97}$

1．The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC．
2．Values for 8 ＂－wide，lightweight，medium－weight and normal－weight concrete masonry units．
3．The minimum specified compressive strength of masonry， $\mathrm{f}^{\prime}{ }_{m}$ ，at 28 days is $2,000 \mathrm{psi}$ ．
4．Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional $1 \frac{1}{4}$＂through $1 \frac{1}{4} 4$－thick face shell．
5．Allowable loads may not be increased for short－term loading due to wind or seismic forces．CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads．
6．Do not use impact wrenches to install in hollow CMU．
7．Set drill to rotation－only mode when drilling into hollow CMU．
8．Refer to allowable load－adjustment factors for spacing and edge distance on p． 129.
9．Anchors must be installed a minimum of $11 / 2^{\prime \prime}$ from vertical head joints and T－joints． Refer to Figure 2 for permitted and prohibited anchor installation locations．

Figure 2．Stainless－Steel Titen HD Screw Anchor Installed in the Face of Hollow CMU Wall Construction

[^2]Load-Adjustment Factors for Stainless-Steel Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

1. The following tables are for reduced edge distance and spacing.
2. Locate the anchor size to be used for either a tension and/or shear load application.
3. Locate the embedment (E) at which the anchor is to be installed.
4. Locate the edge distance ($c_{\text {act }}$) or spacing $\left(s_{\text {act }}\right)$ at which the anchor is to be installed.
5. The load adjustment factor $\left(\mathrm{f}_{c}\right.$ or $\left.\mathrm{f}_{S}\right)$ is the intersection of the row and column.
6. Multiply the allowable load by the applicable load adjustment factor.
7. Reduction factors for multiple edges or spacings are multiplied together.

Edge or End Distance Shear $\left(\mathrm{f}_{c}\right)$ Shear Load Parallel to Edge or End

Spacing Shear (f_{s})

Sact (in.)	Dia.	E	$23 / 8$	$1 / 2$	$5 / 8$
	$s_{c r}$	8	$31 / 2$	$41 / 2$	$51 / 2$
	$s_{\min }$	4	4	8	8
	$\mathrm{f}_{\text {smin }}$	1.00	0.86	0.90	0.94
4		1.00	0.86	0.90	0.94
6		1.00	0.93	0.95	0.97
8		1.00	1.00	1.00	1.00

cact (in.)	Dia.	$3 / 8$	$1 / 2$	$5 / 8$	$3 / 4$
	E	$23 / 4$	$31 / 2$	$41 / 2$	$51 / 2$
	$c_{c r}$	12	12	12	12
	$c_{\text {min }}$	4	4	4	4
	$f_{\text {cmin }}$	0.88	0.56	0.65	0.84
4		0.88	0.56	0.65	0.84
6		0.91	0.67	0.74	0.88
8		0.94	0.78	0.83	0.92
10		0.97	0.89	0.91	0.96
12		1.00	1.00	1.00	1.00

See notes below.

Edge or End Distance Shear (f_{c}) Shear Load Perpendicular to Edge or
End (Directed Away from Edge or End)

$\mathrm{C}_{\text {act }}$ (in.)	Dia.	3/8	1/2	5/8	$3 / 4$
	E	23/4	$31 / 2$	$41 / 2$	5112
	$c_{c r}$	12	12	12	12
	$c_{\text {min }}$	4	4	4	4
	$f_{c m i n}$	0.93	0.48	0.66	0.69
4		0.93	0.48	0.66	0.69
6		0.95	0.61	0.75	0.77
8		0.97	0.74	0.83	0.85
10		0.98	0.87	0.92	0.92
12		1.00	1.00	1.00	1.00

Edge or End Distance Tension (f_{c})

$*$ $c_{\text {act }}$ 	Dia.	$3 / 8$	$1 / 2$	$5 / 8$	$3 / 4$
	E	$23 / 4$	$31 / 2$	$41 / 2$	$51 / 2$
	$c_{\text {cr }}$	12	12	12	12
	$c_{\text {min }}$	4	4	4	4
4	$f_{\text {cmin }}$	0.80	0.81	1.00	1.00
6		0.80	0.81	1.00	1.00
8		0.85	0.86	1.00	1.00
10		0.90	0.91	1.00	1.00
12		0.95	0.95	1.00	1.00

See notes below.

Edge or End Distance Shear (f_{c}) Shear Load Perpendicular to Edge or End (Directed Toward Edge or End)

$\begin{aligned} & \text { Cact } \\ & \text { (in.) } \end{aligned}$	Dia.	$3 / 8$	1/2	5/8	$3 / 4$
	E	23/4	$31 / 2$	$41 / 2$	$51 / 2$
	$c_{c r}$	12	12	12	12
	$c_{\text {min }}$	4	4	4	4
	$f_{c m i n}$	0.93	0.48	0.66	0.69
4		0.93	0.48	0.66	0.69
6		0.95	0.61	0.75	0.77
8		0.97	0.74	0.83	0.85
10		0.98	0.87	0.92	0.92
12		1.00	1.00	1.00	1.00

1. $\mathrm{E}=$ embedment depth (inches).
2. $c_{\text {act }}=$ actual end or edge distance at which anchor is installed (inches).
3. $c_{c r}=$ critical end or edge distance for 100% load (inches).
4. $c_{\text {min }}=$ minimum end or edge distance for reduced load (inches).
5. $f_{C}=$ adjustment factor for allowable load at actual end or edge distance.
6. $\mathrm{f}_{c c r}=$ adjustment factor for allowable load at critical end or edge distance. $f_{c c r}$ is always $=1.00$.
7. $\mathrm{f}_{\text {cmin }}=$ adjustment factor for allowable load at minimum end or edge distance.
8. $\mathrm{f}_{\mathrm{C}}=\mathrm{f}_{\text {cmin }}+\left[\left(1-\mathrm{f}_{\text {cmin }}\right)\left(c_{\text {act }}-c_{\text {min }}\right) /\left(c_{c r}-c_{\text {min }}\right)\right]$.

Spacing Tension (f_{s})

act (in.)	Dia.	$3 / 8$	$1 / 2$	$5 / 8$	$3 / 4$
	$s_{c r}$	$23 / 4$	$31 / 2$	$41 / 2$	$51 / 2$
	$s_{\min }$	$\mathbf{8}$	8	8	8
	$\mathrm{f}_{\text {smin }}$	0.81	0.79	0.87	0.78
4		0.81	0.79	0.87	0.78
6		0.91	0.90	0.94	0.89
8		1.00	1.00	1.00	1.00

1. $\mathrm{E}=$ embedment depth (inches).
2. $s_{\text {act }}=$ actual spacing distance at which anchors are installed (inches).
3. $s_{c r}=$ critical spacing distance for 100% load (inches).
4. $s_{\text {min }}=$ minimum spacing distance for reduced load (inches).
5. $\mathrm{f}_{s}=$ adjustment factor for allowable load at actual spacing distance.
6. $f_{s c r}=$ adjustment factor for allowable load at critical spacing distance. $f_{\text {scr }}$ is always $=1.00$.
7. $\mathrm{f}_{\text {smin }}=$ adjustment factor for allowable load at minimum spacing distance.
8. $f_{s}=f_{\text {smin }}+\left[\left(1-f_{\text {smin }}\right)\left(s_{\text {act }}-s_{\text {min }}\right) /\left(s_{c r}-s_{\text {min }}\right)\right]$.

* See p. 13 for an explanation of the load table icons.

Stainless-Steel Titen HD ${ }^{\circledR}$ Design Information - Masonry

Load-Adjustment Factors for Stainless-Steel Titen HD Anchors in Face-of-Wall Installation
in 8" Hollow CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

1. The following tables are for reduced edge distance and spacing.
2. Locate the anchor size to be used for either a tension and/or shear load application.
3. Locate the embedment (E) at which the anchor is to be installed.
4. Locate the edge distance ($c_{a c t}$) or spacing ($s_{\text {act }}$) at which the anchor is to be installed.
5. The load adjustment factor $\left(f_{c}\right.$ or $\left.f_{S}\right)$ is the intersection of the row and column.
6. Multiply the allowable load by the applicable load adjustment factor.
7. Reduction factors for multiple edges or spacings are multiplied together.

Edge Distance Tension $\left(\mathrm{f}_{\mathrm{c}}\right)$

$*$ act 	Dia.	$3 / 8$	$1 / 2$	$5 / 8$	$3 / 4$
	E	$\mathbf{2 1 / 2}$	$21 / 2$	$21 / 2$	$21 / 2$
	$c_{\text {cr }}$	12	12	12	12
	$c_{\text {min }}$	4	4	4	4
4	$f_{\text {cmin }}$	1.00	1.00	1.00	1.00
6		1.00	1.00	1.00	1.00
8		1.00	1.00	1.00	1.00
10		1.00	1.00	1.00	1.00
12		1.00	1.00	1.00	1.00

Edge Distance Shear (f_{c})

$\begin{aligned} & \text { Cact } \\ & \text { (in.) } \end{aligned}$	Dia.	$3 / 8$	1/2	5/8	$3 / 4$
	E	$21 / 2$	$21 / 2$	$21 / 2$	$21 / 2$
	$C_{c r}$	12	12	12	12
	$c_{\text {min }}$	4	4	4	4
	$f_{\text {cmin }}$	0.78	0.63	0.55	0.51
4		0.78	0.63	0.55	0.51
6		0.84	0.72	0.66	0.63
8		0.89	0.82	0.78	0.76
10		0.95	0.91	0.89	0.88
12		1.00	1.00	1.00	1.00

1. $\mathrm{E}=$ embedment depth (inches).
2. $C_{\text {act }}=$ actual end or edge distance at which anchor is installed (inches).
3. $c_{c r}=$ critical end or edge distance for 100% load (inches).
4. $c_{\text {min }}=$ minimum end or edge distance for reduced load (inches).
5. $\mathrm{f}_{C}=$ adjustment factor for allowable load at actual end or edge distance.
6. $f_{c c r}=$ adjustment factor for allowable load at critical end or edge distance. $f_{\text {ccr }}$ is always $=1.00$.
7. $\mathrm{f}_{\mathrm{cmin}}=$ adjustment factor for allowable load at minimum end or edge distance.
8. $\mathrm{f}_{\mathrm{c}}=\mathrm{f}_{\mathrm{cmin}}+\left[\left(1-\mathrm{f}_{\text {cmin }}\right)\left(c_{\text {act }}-c_{\text {min }}\right) /\left(c_{c r}-c_{\text {min }}\right)\right]$.

Spacing Tension (f_{s})
One Anchor per Cell

$\boldsymbol{C}_{\text {act }}$	Dia.	$3 / 8$	$1 / 2$	$5 / 8$	$3 / 4$
	E	$21 / 2$	$21 / 2$	$21 / 2$	$21 / 2$
	$c_{c r}$	8	8	8	8
	$c_{\text {min }}$	4	4	4	4
	$f_{\text {cmin }}$	0.72	0.87	0.89	0.70
4		0.72	0.87	0.89	0.70
6		0.86	0.94	0.95	0.85
8		1.00	1.00	1.00	1.00

See notes below.
Spacing Shear (f_{s})
One Anchor per Cell

$\begin{aligned} & \text { Sact } \\ & \text { (in.) } \end{aligned}$	Dia.	3/8	$1 / 2$	5/8	$3 / 4$	IBC
	E	$21 / 2$	$21 / 2$	$21 / 2$	$21 / 2$	
	$s_{c r}$	8	8	8	8	\Rightarrow
	$s_{\text {min }}$	4	4	4	4	3
	$\mathrm{f}_{\text {smin }}$	0.81	1.00	0.71	0.74	畀
4		0.81	1.00	0.71	0.74	
6		0.91	1.00	0.86	0.87	$\underset{\leftrightarrow}{6}$
8		1.00	1.00	1.00	1.00	

1. $\mathrm{E}=$ embedment depth (inches).
2. $s_{\text {act }}=$ actual spacing distance at which anchors are installed (inches).
3. $s_{c r}=$ critical spacing distance for 100% load (inches).
4. $s_{\text {min }}=$ minimum spacing distance for reduced load (inches).
5. $f_{S}=$ adjustment factor for allowable load at actual spacing distance.
6. $\mathrm{f}_{\text {scr }}=$ adjustment factor for allowable load at critical spacing distance. $\mathrm{f}_{\text {scr }}$ is always $=1.00$.
7. $\mathrm{f}_{\text {smin }}=$ adjustment factor for allowable load at minimum spacing distance.
8. $\mathrm{f}_{s}=\mathrm{f}_{\text {smin }}+\left[\left(1-\mathrm{f}_{\text {smin }}\right)\left(s_{\text {act }}-s_{\text {min }}\right) /\left(s_{c r}-s_{\text {min }}\right)\right]$.

Spacing Tension (f_{s})
Two Anchors per Cell

Cact (in.)	Dia.	$3 / 8$	$1 / 2$	$5 / 8$	$3 / 4$
	E	$21 / 2$	$21 / 2$	$21 / 2$	$21 / 2$
	$c_{\text {cr }}$	8	8	8	8
	$c_{\min }$	4	4	4	4
	$f_{\text {cmin }}$	1.00	1.00	1.00	0.78
4		1.00	1.00	1.00	0.78
6		1.00	1.00	1.00	0.89
8		1.00	1.00	1.00	1.00

See notes below.

Spacing Shear (f_{s})
Two Anchors per Cell

$\begin{aligned} & \text { Sact } \\ & \text { (in.) } \end{aligned}$	Dia.	3/8	1/2	5/8	$3 / 4$	IBC
	E	$21 / 2$	$21 / 2$	21/2	$21 / 2$	
	$s_{c r}$	8	8	8	8	\Rightarrow
	$s_{\text {min }}$	4	4	4	4	13
	$\mathrm{f}_{\text {smin }}$	0.76	1.00	0.75	0.75	
4		0.76	1.00	0.75	0.75	
6		0.88	1.00	0.88	0.88	0
8		1.00	1.00	1.00	1.00	\rightarrow

[^3]
[^0]: * See p. 13 for an explanation of the load table icons.

[^1]: * See p. 13 for an explanation of the load table icons.

[^2]: ＊See p． 13 for an explanation of the load table icons．

[^3]: * See p. 13 for an explanation of the load table icons.

